Pervasive adaptive evolution among interactors of the Drosophila hybrid inviability gene, Nup96.
نویسندگان
چکیده
Nup96 is involved in a lethal hybrid incompatibility between 2 fruit fly species, Drosophila melanogaster and Drosophila simulans. Recurrent adaptive evolution drove the rapid functional divergence of Nup96 in both the D. melanogaster and the D. simulans lineages. Functional divergence of Nup96 between these 2 species is unexpected as Nup96 encodes part of the Nup107 subcomplex, an architectural component of nuclear pore complexes, the macromolecular channels in nuclear envelopes that mediate nucleocytoplasmic traffic in all eukaryotes. Here we study the evolutionary histories of 5 of Nup96's protein interactors--3 stable Nup107 subcomplex proteins (Nup75, Nup107, and Nup133) and 2 mobile nucleoporins (Nup98 and Nup153)--and show that all 5 have experienced recurrent adaptive evolution. These results are consistent with selection-driven coevolution among molecular interactors within species causing the incidental evolution of incompatible interactions seen in hybrids between species. We suggest that genetic conflict-driven processes may have contributed to the rapid molecular evolution of Nup107 subcomplex genes.
منابع مشابه
Lineage-Specific Evolution of the Complex Nup160 Hybrid Incompatibility Between Drosophila melanogaster and Its Sister Species.
Two genes encoding protein components of the nuclear pore complex Nup160 and Nup96 cause lethality in F2-like hybrid genotypes between Drosophila simulans and Drosophila melanogaster. In particular, D. simulans Nup160 and Nup96 each cause inviability when hemizygous or homozygous in species hybrids that are also hemizygous (or homozygous) for the D. melanogaster X chromosome. The hybrid lethali...
متن کاملEvolution of the Drosophila nuclear pore complex results in multiple hybrid incompatibilities.
Speciation often involves the evolution of incompatible gene interactions that cause sterility or lethality in hybrids between populations. These so-called hybrid incompatibilities occur between two or more functionally divergent loci. We show that the nucleoporin 160kDa (Nup160) gene of the fruitfly Drosophila simulans is incompatible with one or more factors on the D. melanogaster X chromosom...
متن کاملThe Rate of Evolution of Postmating-Prezygotic Reproductive Isolation in Drosophila
Reproductive isolation is an intrinsic aspect of species formation. For that reason, the identification of the precise isolating traits, and the rates at which they evolve, is crucial to understanding how species originate and persist. Previous work has measured the rates of evolution of prezygotic and postzygotic barriers to gene flow, yet no systematic analysis has studied the rates of evolut...
متن کاملPatterns of Speciation in Drosophila.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating disc...
متن کاملPositive selection at the binding sites of the male-specific lethal complex involved in dosage compensation in Drosophila.
In many taxa, males and females differ with respect to their sex chromosomes, and dosage compensation mechanisms have evolved to equalize X-linked gene transcription. In Drosophila, the male-specific lethal (MSL) complex binds to hundreds of sites along the male X chromosome and mediates twofold hypertranscription of the single male X. Two recent studies found evidence for lineage-specific adap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 24 1 شماره
صفحات -
تاریخ انتشار 2007